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Abstract

The automatic resolution for resolving conflict updates in
cloud storage services has been well studied, however, how
to correctly implement the resolution in real-world systems
remains challenging. In this paper, we present the challenges
we experienced when implementing our cloud storage sys-
tem. They include (1) detecting the intended object for an
update when the intended object has been automatically
changed by the conflict resolution, and (2) producing no dif-
ferent intermediate results when resolving the conflict up-
dates from more than two replicas. We present our solution
of using the mechanism of the conflict resolution to redirect
an update to its intended object and of using Conflict-Free
Replicated Data Type (CRDT) for a “clean” implementation
of conflict resolution without different intermediate results.

1. Introduction

A cloud storage system, such as Dropbox [8], is essentially
a distributed file system that uses the eventual consistency
approach [23-25] to ensure the availability of its service in
the presence of network partition or delay by relaxing the
consistency requirement following the CAP theorem [5, 9].
In such a system, all updates are committed locally on each
replica before being synchronized with the other replicas.
When a conflict happens, i.e., when some updates from dif-
ferent replicas concurrently target the same object, an even-
tually consistent distributed file system automatically re-
solves the conflict using its own conflict resolution. For ex-
ample, when users on different replicas A and B concur-
rently update the same file foo, one of the updates will be
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Figure 1. An example challenge for implementing a con-
flict resolution in eventually consistent distributed file sys-
tems. Arrows for timelines; dashed arrows for updates and
propagation; S4 and Sp are states at some point in time of
replicas A and B, respectively.

preserved in another file, such as “foo (B’s conflicted
copy)” as with Dropbox, to resolve the conflict.

The automatic conflict resolution for conflict updates in
eventually consistent distributed file systems have been well
studied [2, 4, 13, 19, 22], however, how to correctly imple-
ment the resolution in real-world systems remains challeng-
ing. Consider the previous example (Fig. 1) when users on
A and B concurrently write [J and A, respectively, to foo of
inode ¢; the user on B later then deletes foo after propagat-
ing the previous update to A and before receiving the update
from A. When receiving B’s first update, A would see the
conflict on foo and would then resolve this conflict by gen-
erating another file, named foo.B of inode j, to store the
update from B. When the second update from B arrives, A
would find that it has to delete the file foo of inode i. Up to
this point, there is an obvious problem: the file which should
be deleted in the intention of B’s second update is foo.B on
A, however, all of the information received from B was to
delete foo of inode ¢. Implementations of the conflict resolu-
tion in this case must therefore identify the intended objects
of an update to which an update should be redirected.

Another example is our experiment with Dropbox when
we created a system of three replicas A, B, and C' and we
concurrently updated a common file foo on these replicas.



In some cases on A, Dropbox firstly renamed foo, which
was containing A’s update, to foo.A' and created another
foo to store C’s update when A received it from C. When A
later then received the update of B, Dropbox again renamed
foo, which was containing C’s update, to foo . C and created
another foo to store B’s update. From this observation we
see that Dropbox, when resolving the conflicting updates,
created an intermediate result, i.e., foo stored C’s and finally
B’s update in this example. This intermediate result though
does not affect the eventual consistency of the replicas, it
would however cause some more complexity for conflict
resolution if users on A made more updates to foo when
foo was storing C’s update.

In this paper, we present the challenges we experienced
while implementing conflict resolution for our cloud storage
system and we describe our solution for these challenges.
These challenges include capturing the intention of those
subsequent of a conflict update, and the problem with inter-
mediate conflict resolution results. To the best of our knowl-
edge, we are the first to publicly and systematically formal-
ize and target the problem of implementing conflict resolu-
tion in eventually consistent distributed file systems.

We will iterate through possible conflict cases in even-
tually consistent distributed file systems and corresponding
resolution in Section 3. We present our formalization of all
problems with automatic conflict resolution in Section 4 and
our solution for a correct implementation in Section 5.

2. Existing Approaches

Distributed storage systems that target automatic resolution
for conflict updates usually mix between merging semantics
in conflict resolution and conflict resolution implementation.
The problems of subsequent updates and different intermedi-
ate results have not been discussed in these systems neither.

2.1 Distributed File Systems

Locus distributed file system [26] and its descendants such
as Ficus [19], Rumor [12], or Roam [18] use another way to
resolve the data conflict and naming conflict that is to move
the files in conflict into a special directory and notify users
about this automatic decision. This approach, while can con-
verge the replica, interrupts the work on the files on all repli-
cas when a conflict happens. It is not known whether subse-
quent updates could be directed to the files, which has been
moved into another location, or not. Reconciling multiple
replicas in these systems is done by pairwise merging with-
out any guarantee about the convergence of the replicas.
Other file systems such as Coda [13], DSF-R [4], and
Unison [2] do not specify the way their implementation work
with multiple replicas. Ramsey’s algebraic approach [17] re-
mains an impractical model as it requires global synchro-
nization, which is a moment when all sites stop and ex-

' We use the short names foo. A, foo.B, and f0o.C to represent the actual
long names that Dropbox created.

change their updates; this model is not the case of real-world
systems. Present cloud storage systems such as Microsoft
OneDrive [15], Google Drive [11], and Dropbox [8] use pro-
priatery software; these systems can solve the issue with sub-
sequent updates to an automatically renamed file but they
also produce different intermediate results.

Versioning file systems, such as Ori [14], explicitly store
concurrent updates to the same file in different branches or
different checkpoints in the history of the file systems. These
systems do not have the problem with subsequent update
because the causal relationship between subsequent updates
is explict; manual mergings of the concurrent updates to the
same file, if required, do not usually generate new files as
with systems with automatic conflict resolution. Versioning
file systems therefore do not have the problem of subsequent
updates of the other optimistic distributed file systems.

The problem of subsequent updates to objects or files in
conflict has been casually mentioned in Bayou [23], which
is an early distributed system of the eventual consistency ap-
proach, and in TierStore [7], a more recent optimistic repli-
cation distributed file system. As contrast to Ficus or Coda,
users in Bayou and TierStore can still read from and write
to objects which are in conflict. The subsequent updates
problem, even though has been acknowledged, however was
not discussed in detail and was not solved; this is explic-
itly stated in Bayou: “Of course, the potential drawback of
this approach is that newly issued Writes may depend on
data that is in conflict and may lead to cascaded conflict res-
olution.” and it remains a question in TierStore: “once the
name conflict occurs [...], if the user were to write some
new contents to /foo, should the new file contents replace
both conflicting mappings or just one of them?” We differ
from the work in Bayou and in TierStore by directly target-
ing the problem of subsequent updates in our research and
by having a systematic approach for solving the issue.

2.2 Other Systems

Version control systems such as Git [10] or SVN [1] could
be also viewed as file system synchronizer when they syn-
chronize the namespaces of projects. Version control sys-
tems share the same design of versioning file systems in
which concurrent updates are explicitly stored in different
branches of a project’ and merging is done manually. Ver-
sion control systems therefore do not have the problem of
subsequent updates as with eventually consitent distributed
file systems with automatic conflict resolution.

Modern NoSQL key-value stores, such as Amazon’s Dy-
namo [6] or Riak [3], have the definition of multiple val-
ues for a key which is similar to our system model for con-
flict resolution if we consider a name in our system as a key.
However, these stores are much simpler than file systems in
which each version of the value of a key could only be ac-

2 Orthogonal updates can be merged automatically but merging these up-
dates generates no new files.



cessible through the key; in file systems, however, these ver-
sions must also be exposed to users under their own names,
e.g., in new files when resolving data conflicts.

3. Conflict Cases and Resolution

In this section, we describe the possible conflict cases and
the conflict resolution in eventually consistent distributed file
systems. Interested readers can find more about our system
model and conflict resolution strategy in another work [22].
We model a file system as a partially ordered set (poset)
(Fig. 2). In this model, an element is a directory, a file, or
an inode. There are two types of relation between these ele-
ments, namely, hierarchy, which is the relationship between
a directory and it children, and mapping, which is the re-
lationship between a directory or a file and its inode. The
hierarchy relationship is one-to-many while the mapping re-
lationship is one-to-one for directories and many-to-one for
files. Because of the one-fo-one property of the mapping re-
lationship for directories, we consider a pair of a directory
and its inode as a single element in the system model.
Concurrent updates that target the same elements in the
system model may cause conflict if merging them violates
any of these above specifications of the file system model.
For example, users on different replicas of a file system con-
currently create the same file foo; this violates the mapping
relationship when a name foo is mapped to many inodes.
Based on our file system model, we detect the following
cases of conflict: state conflict, data conflict, naming con-
flict, and mapping conflict (Fig. 3). We present each of them
in the following with their corresponding conflict resolution.

State Conflict This conflict happens when users on different
replicas concurrently delete and update an element (a direc-
tory or a file). This kind of conflict is resolved by keeping
the updated replica in the final result of conflict resolution.

Data Conflict This kind of conflict happens on files only
when users concurrently write to the same file inode. There
are several ways of resolving this kind of conflict, such as
merging the contents into a single file when the file type is
known to be mergeable, storing the updates in different ver-
sions of the file as with the Copy-On-Write technique, and
creating different files to store different updates. In this re-
search and in popular cloud storage systems [8, 11, 15], we
choose to use the last solution, which is to create different
files to store different contents. Specifically, we remove the
original file after creating the new files. For example, when
resolving concurrent writes from A and B to the same file
foo, we make new files foo.A and foo.B to store the up-
dates from respective replicas, and we remove foo.

Naming Conflict This conflict happens when users on dif-
ferent replicas concurrently create different elements (direc-
tories and/or files) with the same name. For example, a user
on A creates a file foo while another user on B creates an-
other directory foo. In the case these elements are both file,
we rename the files to different names to distinguish them;
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Figure 2. The system model of a file system showing a
namespace and its mapping with the file inode. This is a
simplified model in which the mapping of a directory and
its inode is represented by a single vertex.

if they are a file and a directory, we only rename the file; if
they are both directory, we recursively merge the contents of
these directories.

Mapping Conflict This conflict happens when users on dif-
ferent replicas concurrently rename the same directory to
different names; merging these updates would violate the
one-to-one property of mapping relation for directories when
multiple names are mapped to the same directory inode. We
resolve this conflict by making different copies of the di-
rectory inode, each of which has the corresponding name.
For example, if a directory foo is renamed to bar and qux
concurrently, we will make different copies of foo and its
subtree and rename these copies of foo to bar and qux.

4. Implementation Challenges

The conflict resolution, while resolving conflict updates,
makes automatic changes to the file system. This is an im-
plementation issue because the conflict resolution in a real-
world system is usually performed asynchronously while the
system is still actively working; users can make subsequent
updates to an object on a replica while that object’s identity,
such name or inode number, on another replica has been
changed by the automatic conflict resolution. In the cases
of data conflict and naming conflict, subsequent updates tar-
geting the original file cannot find the target on the other
replicas when its names has been changed. In the case of
state conflict, the deleted element is restored by the conflict
resolution; this may also cause issue for subsequent updates
on the replicas where the object is deleted.

Another implementation challenge is to make the conflict
resolution to work with a large number of replicas without
introducing any different intermediate state. For example, a
system can resolve on A the concurrent updates to file foo
from B by making new files, such as foo.A and foo.B,
to store the updates of A and B, respectively; the problem
then becomes how to identify the concurrency and how to
solve it when A receives another concurrent update from
C. Some systems such as Dropbox solves this problem by
making only one new file, such as foo.A in this example,
and keep the original name foo. However, the problem with
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Figure 3. Conflict cases in eventually consistent distributed file systems and our resolution. With init; and inito as the starting
common state for replicas A and B in the cases of State Conflict, Data Conflict, and Mapping Conflict and in the case of Naming
Conlflict, respectively. Modified states of the replicas are on the left and the final outcomes are on the right of the large arrows.

these approaches is that the original file could go through
some different states before coming to the final state. These
approaches thus expose intermediate results to users while
resolving the conflict of a large number of replicas. In ad-
dition, conflict resolution may require coordination between
replicas or a centralized service to decide the order of the
replicas to keep their updates in the original file.

Based on the conflict cases and resolution and on these
above intuitions, we formalize the challenges that we found
in implementing the conflict resolution in the following:

1. The intended targets for an update have been changed in

automatic conflict resolution. It is important to identify
the intended targets for a subsequent update and redirect
it to the proper targets.

. A real-world system usually has a large number of repli-
cas working concurrently. How to identify and resolve
the conflict of an arbitrary number of replicas without in-
troducing any different intermediate result is challenging.

5. Our Solution and Implementation
5.1 Solution Overview

Subsequent Updates 'We use the conflict resolution func-
tion to redirect the subsequent updates of a conflict update
to their targets. The intuition behind this decision is that
conflict resolution generates new files and redirect respec-
tive conflict updates to these new files, thus the best solu-
tion for redirecting subsequent updates of a conflict update
to its intended targets is to use the mechanism of the conflict
resolution function. We consider the conflict resolution as a
function f that creates new objects and redirects respective
updates to these new objects based on its own mechanism.
In our example when users on A and B concurrently issue
writes operations w 4 and wp, respectively, to foo, the con-
flict resolution function f would create new files foo.A and
foo.B and would redirect the respective updates w4 and wp
to these new files.

In order to be able to redirect subsequent updates, f stores
the information about the object on which a conflict hap-
pened and a conflict has been resolved. When f receives
subsequent updates targeting this object, the function would
identify that there are new objects created to store the up-
dates from corresponding replicas and would redirect these
subsequent updates to the correct new objects. In our exam-
ple, f, after resolving conflict on foo, marks foo as depre-
cated, which means conflict of w4 and wp on foo has been
resolved. When another update rm from B which targets
foo comes, f would see that foo is deprecated and that f
should redirect this update to the file foo.B. By using the
redirecting mechanism of the conflict resolution, the system
could find the intended target for a subsequent update.

Multiple Replicas Without Different Intermediate Results
To make the conflict resolution to work with an arbitrary
number of replicas without generating different intermedi-
ate result is to make the intermediate results to be subsets of
the final result. This is because the “no intermediate result”
is only achievable in global synchronization, which requires
all replicas to stop and exchange their updates. Real-world
system use asynchronous pairwise synchronization between
replicas so intermediate results must be a part of the con-
flict resolution. We can, however, make these intermediate
results subsets of the final result to reduce the complexity of
exposing them to users. We formalize this as in following:

f(a,b) € f(f(a,b),c) (1

where a, b, and ¢ are concurrent updates to the same object.
We use Conflict Free Replicated Data Type (CRDT) [20,
21]—a specification for eventually consistent data types—to
achieve the above result. CRDT ensures the conflict resolu-
tion function to be idempotent, commutative, and associa-
tive. This means merging any pair of conflict replicas com-
putes their Least-Upper-Bound (LUB), i.e., f(f(a,b),c) =
LUB(f(a,b), ¢) which in turn implies f(a,b) € f(f(a,b),c).



This is our desired result to make the conflict resolution
function to produce no different intermediate result.

In our example of merging on A concurrent updates to
foo from other replicas B and C, merging the updates from
B on A generates {foo.A, foo.B}; when A receives another
update from C, it generates another file foo.C. Finally, the
state of the replica A is {foo.A, f00.B, foo.C}, whichis a
superset of the above intermediate state.

5.2 Conflict Resolution Model

Model We model the system as a key-value store in which
avertex, i.e., a directory, a file, or an inode, is an entry whose
key is the absolute path (of a directory or a file) or the inode
number (of an inode). A key in this model is ensured to be
unique sinced an absolute path of a directory or a file and an
inode number is assumed to be unique.

For an entry of a directory or a file, the key is the name’
and the associated value is a set of properties: inode, type,
state, and version. The property inode is the inode number
associated with the name, fype identifies whether the entry is
a directory or a file, version stores the partial order between
different updates from different replicas of the name, and
state indicates the state of the name, which is either present,
deleted, or merged. A name has a state of present when it
is created and has not been deleted; a name is in the state of
deleted when it is deleted by a user; a name’s state is changed
to merged when either a data conflict or naming conflict on
it has been resolved. A name in the merged state appears to
be similar to deleted to users in which users cannot see it and
can create new directory or file with the name.

The version of an entry increases monotonically. It in-
creases when it is created or when it receives the first update
from users since it has been propagated to the other replicas
or when it receives an update from another replica. The ver-
sion is usually implemented in the form of a version vector,
which is a popular technique, to store the partial relationship
between different updates on different replicas of the entry.

The operations in a file system may change the properties
of an entry. For example the operations when a user deletes a
file foo and then creates another directory foo are translated
into the state of the entry foo is firstly changed to deleted,
then to present and the type of the entry is changed into
directory and its inode is changed to a new inode number.

The conflict resolution operation on an entry may change
the entry’s state into merged depending on the type of the
conflict. In the case the conflict is either data conflict or
naming conflict, the conflict resolution would change the en-
try’s state into merged and would create new entries. For
example when users on different replicas A and B concur-
rently update the same file foo, merging these updates on
any replicas would change the state of foo into merge and
would create new names foo.A and foo.B. The proper-

3We use the term name in this section to refer to the absolute path of a
directory or a file unless stated otherwise.

ties of these new names are the properties of the replicas
of foo on A and B, respectively, except the inode numbers.
In this case foo.state = merged, foo.A.inode = i; and
foo.B.inode = is.

How Does This Model Solve The Problems In our view,
the original named whose state has been changed into
merged serves as the point to redirect subsequent updates
from different replicas to their intended targets. A subse-
quent update could be viewed as in a conflict with the origi-
nal name; the conflict resolution is then used to resolve this
conflict which would then generate a new file which over-
writes the previously created file for the update from the
replica of the subsequent update.

In our first example in Figure 1, when resolving the con-
flict between concurrent updates to foo from A and B on
A, our conflict resolution changes foo’s state to merged
and creates foo.A and foo.B. The properties of these en-
tries are as followings: foo.state = merged, foo.version =
LUB(v4, vp) with vy and v are versions of the foo on A
and B respectively, and foo.B.version = vg. When A re-
ceive a subsequent update from B, which is to remove foo,
with the version v'; that vj; > vp, it detects the conflict be-
tween its version of foo and the received foo from B, and A
then apply a resolution for the data conflict on foo, which is
to create another foo.B, to resolve this conflict. In this case,
the conflict resolution updates the state and version proper-
ties of foo. B to deleted and v'z, respectively; this is equal to
our desired result of redirecting the subsequent update to its
intended target which is foo.B.

This model also work with multiple replicas without gen-
erating different intermediate state. Consider the functions to
generate new inode numbers and new names are determin-
istic, the conflict resolution for any pair of conflict update is
commutative. Indeed, in the case of data conflict, merging
a pair of conflict updates from different replicas generates
new file names with new inodes on all replicas; with the de-
terministic generating functions, the outcomes of resolving
the conflict in these replicas, which are new file names and
new inode numbers, are the same. Similarly, the property
associative of the conflict resolution is also ensured. Con-
sider the original name after resolving a data conflict or a
naming conflict as a redirect point, merging another update
from any other replica is to redirect the update to the corre-
sponding generated file. For example the name foo resulted
from merging concurrent updates from A and B would be
the point to redirect other conflict updates from C, D, E to
their corresponding files foo.C, foo.D, and foo.E. This re-
sult is repeated on any other resolving order of concurrent
updates from these replicas and ensure the associative prop-
erty of the conflict resolution function.

Because of having the properties of idempotent (by using
an engineering approach which will be described in the next
section), commutative, and associative, the conflict resolu-
tion function is actually a kind of CRDT, which ensures the



eventual consistency of replicas without generating different
intermediate results.

5.3 Implementing as CRDT

Implementations of the system should follow the specifica-
tions of CRDT, it means, to make the conflict resolution in
each case become idempotent, commutative, and associative
w.r.t implementations’ definition of < the partial order. In
this section, we will discuss in detail the implementation of
our conflict resolution that has the above properties.

Fartial order We define the partial order < based on the
timestamps for the states, i.e., if s* and s** are the states of
foo before and after an update or a merge, then s < st+!,
We use version vector [16], which is a frequently used tech-
nique, for assigning timestamps in our system. A version
vector for a replica of an object (a file or a directory) is
a sparse vector whose elements represent replicas’ identi-
fier and the numbers of the updates that have been made on
the object from these replicas. Formally, vv = {S;:v;}i=1..n
with a pair of (S;:v;) denotes a replica identifier and num-
ber of updates from that replica. For example, the version
vector vvly = <A:1, B:1> of foo on A states that A has
committed an update on foo and A has received from B
another update on foo; when A commits another update
on foo, vvy becomes vvfjl = <A:2, B:1>. For any two
version vectors vv4 and vvg, we have vvy < wvvpg iff
V(S;v;) € vua = 3(S;:0)) € vup st v; <, v with <,
is an arithmetic comparison of two integers; vv4 = vvp iff
s < vvg ANvvg < vua; vvys and vug are concurrent,
denoted by vva||vvp, otherwise. In the previous example,
vol < vvi{"l according to the above definition.

Idempotance We make our conflict resolution idempotent
by ignoring updates with less recent timestamps. For exam-
ple, when A merges the update with timestamp v’; from B,
it increases the timestamp of foo from v/, to vfj‘l after the
merge such that v’ < vf4+1 and vl < vf4+1. When A re-

ceives vl again, A would ignore this update because A’s

v’ is more recent.

State conflict We always preserve the element which has
been edited after the merge with concurrent deletes. For
example, if foo with version v* is concurrently deleted and
updated on A and B to become v, and v4, respectively,
the result after merging these sites is version v}y with the
content of v?‘l. This implementation makes the merging
semantics commutative and associative because the merge
function always prefer the edited state over those concurrent
deleted; this resembles the bitwise OR operation, which is
CRDT by definition.

Data conflict The setup for this example include three sites
A, B, and C with a common file foo of inode 3. Users on
these sites concurrently write to foo.

We make our conflict resolution commutative in the sense
that, a pairwise merge of a pair of replicas on either site must

produce the same outcome. In this example, merging repli-
cas of foo from A and B must produce the same new files
foo.A of inode 7; and foo.B of inode i3 on both A and
B. We break down the problem of commutativity into mak-
ing new names and new inode numbers deterministically. We
make new names by adding suffixes which are the names of
the site of each replica; this function is deterministic since
the site names are predefined. We make new inode numbers
by hashing the combinations of the original inode number
and the site names; with the same deterministic hash func-
tion f and the same inputs {7, A, B}, the outcomes are the
same inode numbers i; = f(i, A) and ix = f(i, B).

We make our conflict resolution associative following our
conflict resolution model in Section 5.2. When A receives
the replica from B, it creates {foo.A — i1, f00.B — ig}”
and changes the state of foo into merged. When A receives
the update from C' after the merge with B, it would identify
the conflict of C’s version with its own version of foo and
makes foo.C — i3. When all other sites have done the same
process, they will have the same state of {foo.A — iy,
f00.B — iy, foo.C — i3}, regardless of the order of
merging these replicas.

Naming conflict We have some cases for this conflict.

Files with the same name In this example, users on A, B,
and C concurrently create the same file foo with inodes i1,
12, and i3, respectively. The versions for the names on A, B,
and C are vYy, vk, and v}, respectively.

The conflict resolution for a pairwise merge is commu-
tative because the function to create new names is deter-
ministic as discussed already. For example, merging updates
from A and B would create {foo.A — i1,f00.B — ia}
on both sites. Following our conflict resolution model, the
implementation of this conflict resolution is associative. In-
deed, the conflict resolution for a pairwise merge on any
replica changes the state of the entry of the original name
into merged; when another update from the other site ar-
rives, the conflict resolution can identify the conflict in the
entry of the original name and generate a new name for the
received entry. With the previous example, when A receives
foo — i3 from C, it can identify the concurrency between
the received foo of version vf, and its merged foo of version
vf‘:jgl; merging these names generates foo.C — 3.

Directories with the same name In this situation, users
on A, B, and C create different directories of inodes i1, i,
and 13, respectively, with the same name foo. We merge the
mapping tables of the directories in a pairwise merges to
make another directory which represents these different di-
rectories. The problem becomes choosing deterministically
an inode number for the merged directory.

We choose the inode deterministically by using our defi-
nition of inode proxy. When merging with another directory
with the same name from another site, the inode number of

4We use — to present the mapping relation between a name and an inode.



the local directory will be used as the inode number of the
merged directory, while the inode number of the remote di-
rectory will be an inode proxy, which acts as a proxy that
redirects all accesses to it to the main inode. For example,
when merging foo — 4 and foo — i3 on A, we choose i1
as the main inode number for the merged directory on A and
i3 becomes an inode proxy of i;. Accessing iz on A would
return the merged directory. This is however reversed on B
where 5 is the inode number for the merged directory and 71
is an inode proxy. This function is indeed commutative and
associative because, on all sites by the end, there are i1, is,
and 73 pointing to the same inode.

File and directory with the same name We only change
the name of the file. The other information such as inode
number and the name of the directory does not change. This
function is commutative and associative.

Mapping conflict We make different copies of the direc-
tory to preserve the different names. We keep the history
of the original inode to support the associativity. In this ex-
ample, users on A, B, and C start with the same directory
foo of inode ¢ and they concurrently rename the directory to
bar, qux, and quz, respectively. A pairwise merge between
A and B would create on both sites the new inodes ¢; and
1o with bar and qux are mapped to these new inodes, i.e.,
{bar — i1,qux — is}. The problem of deterministically
making new inode numbers has been well described in the
case of data conflict; this function is thus commutative.

The state of the inode ¢ is changed into merged. When
A receives the update from C, it would see the concurrency
between its own version of ¢ and the received version from
C. Merging these states would generate a new inode i3 with
quz — 3. After each replica has applied all updates from
the other replicas, these replicas will have the same state of
{bar — i1,qux — iz,quz — i3}. The conflict resolution
function is thus associative.

6. Evaluation

We compared our prototype named GeoFS to the most pop-
ular public cloud storage system Dropbox to see how our
conflict resolution model impacts the implementation of our
storage system. We knew that it would not be fair when com-
paring an industrial level system, which has to handle many
real-world cases, to a prototype, which has a lot of assump-
tions. Therefore, we decided to benchmark the ratios of time
and the ratios of bandwidth usage it takes these systems to
synchronize their replicas in different cases when the num-
ber of files in conflict increases.

The experimental setup included four virtual machines
running Ubuntu Server 14.04 LTS as replicas, each of which
uses one CPU core and 1GB memory of the host. These
replicas were in the bridge networking mode; the Dropbox
clients was with the lansync mode on. We implemented Ge-
oFS in NodeJS and FUSE; the replicas of GeoFS communi-
cates directly with each other over the HTTP protocol.
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Figure 4. Evaluation of Dropbox and GeoFS. Values are the
average for each replica.

On each replica of these systems, we concurrently created
n files which are named from 1 to n to create n conflicts for
each pair of replicas. The content of each file is the one-byte
identifier of the replicas on which the file was created. We
tested with different cases when n is 100, 400, and 900.

We measured the time starting from when all files had
been created until these systems finished synchronization.
For our system, it’s easy because we can manipulate the
code, however it’s difficult for measuring this information
in Dropbox system since it’s proprietary software could not
be interfered. Therefore we decided to use a manual method
in which we manually watched the status of all Dropbox’s
replicas and identified when they finished synchronizing. We
used a daemon® provided by Dropbox to check the synchro-
nization status, we identified the termination of synchroniza-
tion only when the status of all replicas is “Up to date”; we
used Linux tools time and watch with an interval of 2 sec-
onds to monitor the replicas’ status. In addition, we used an-
other tool iftop to track the network usage of both systems.

As shown in Figure 4, GeoFS used much less time and
network to synchronize its replicas in all cases compared
to Dropbox. More importantly, we see the exponential in-
crease in both the time and the bandwidth that Dropbox used
in synchronization as the number of conflicts increased. On
the other hand, these measures for GeoFS increased linearly.
This can be explained by the synchronization mechanism of
each system. As we inspected the network usage of Drop-
box, we saw a lot of traffic between each Dropbox replica
and dropbox. com. Furthermore, Dropbox’s synchronation
status showed that a replica’s status repeatly changed be-
tween being stable (“Up to date”) then being active (“‘syn-
chronizing”, “uploading”, and “downloading”) for multiple
times before all of these replicas converged. From these ob-
servations, we believe that Dropbox uses a form of central-
ized synchronization where dropbox . com acts as the central
point. As oppose to Dropbox, our prototype GeoFS is totally
decentralized in any sense (network traffic and conflict res-
olution); this led to the linear time and network usage for
synchronization when the number of conflicts increased.

5 https://www.dropbox.com/download ?dl=packages/dropbox.py



7. Conclusions and Future Work

We presented the challenges we encountered when imple-
menting our cloud storage system. They are (1) identifying
the intended object of a subsequent update to a conflict ob-
ject after conflict resolution, and (2) a “clean” implemen-
tation method that does not produce different intermediate
outcome in merging an arbitrary number of replicas. We tar-
get these challenges by applying the framework of CRDT,
which is a specification for eventually consistent data types.
To the best of our knowledge, we are the first to publicly
formalize and target these challenges in a systematic way.

In the future work, we target reducing the complexity that
an eventually consistent system exposes to users and devel-
opers using a session system. This session system provides
a traditional POSIX API while ensuring the eventual con-
sistency of the storage systems. We also target an efficient
garbage collection system in future work.
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