
Generalized Concurrency Testing Tool for Distributed Systems

Ege Berkay Gulcan
Delft University of Technology

Delft, Netherlands

e.b.gulcan@tudelft.nl

João Neto
Delft University of Technology

Delft, Netherlands

j.m.louroneto@tudelft.nl

Burcu Kulahcioglu Ozkan
Delft University of Technology

Delft, Netherlands

b.ozkan@tudelft.nl

Abstract

Controlled concurrency testing (CCT) is an e�ective approach for

testing distributed system implementations. However, existing CCT

tools su�er from the drawbacks of language dependency and the

cost of source code instrumentation, which makes them di�cult

to apply to real-world production systems. We propose DSTest,

a generalized CCT tool for testing distributed system implemen-

tations. DSTest intercepts messages on the application layer and,

hence, eliminates the instrumentation cost and achieves language

independence with minimal input. We provide a clean and modular

interface to extend DSTest for various event schedulers for CCT.

We package DSTest with three well-known event schedulers and

validate the tool by applying it to popular production systems.

CCS Concepts

• Software and its engineering → Software testing and de-

bugging; • Computer systems organization → Distributed

architectures.

Keywords

Concurrency testing, Distributed systems

ACM Reference Format:

Ege Berkay Gulcan, João Neto, and Burcu Kulahcioglu Ozkan. 2024. Gen-

eralized Concurrency Testing Tool for Distributed Systems. In Proceedings

of the 33rd ACM SIGSOFT International Symposium on Software Testing and

Analysis (ISSTA ’24), September 16–20, 2024, Vienna, Austria. ACM, New

York, NY, USA, 5 pages. https://doi.org/10.1145/3650212.3685309

1 Introduction

Distributed systems are the backbone of manymodern software sys-

tems, from data storage to cloud services. This comes with increased

sensitivity to software reliability. However, distributed systems are

prone to heisenbugs [20] due to many sources of non-determinism,

such as concurrency, network conditions, and faults. These bugs

manifest only in some interleavings of the system events, and they

are di�cult to detect and reproduce with traditional approaches.

Model-checking [8, 13, 16] checks the correctness of systems by

exploring all possible executions of the system’s model. While they

can verify the correctness or �nd bugs in the system design, they

cannot ensure the correctness of the system’s implementations.

ISSTA ’24, September 16–20, 2024, Vienna, Austria

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0612-7/24/09
https://doi.org/10.1145/3650212.3685309

A prominent approach to �nding heisenbugs in distributed sys-

tem implementations is controlled concurrency testing (CCT). Dif-

ferent from naive stress testing, CCT controls the concurrency

nondeterminism in the delivery order of messages, network faults,

and process faults. It utilizes an event scheduler, which generates

particular orderings of events to exercise and enforces their execu-

tion in the system. CCT can be employed for systematic testing of

all possible executions of the implementation (e.g., [4, 17, 23]) or ex-

ercising carefully generated test executions (e.g., using PCT [3, 22],

POS [24], and QL [19] algorithms for event scheduling), which have

been e�ective at �nding many bugs in distributed systems.

However, applying CCT to test real-world distributed system im-

plementations is di�cult since it demands gaining control over con-

currency nondeterminism. Speci�cally, it requires a testing frame-

work that intercepts the messages exchanged between distributed

nodes, manages the nodes’ start-up, restart, and graceful stopping,

communicates these distributed system events to the controlled

scheduler, and enforces the scheduling and fault injection choices in

the system execution. This process is costly and usually a technical

barrier to the evaluation.

Motivation. The current practice of controlled concurrency test-

ing of distributed system implementations involves implementing

the system in a controlled concurrency environment or manually

instrumenting the system to gain control over the nondeterminism,

each of which has its limitations.

The controlled concurrency environments are typically language

or framework dependent, which restricts the developers’ choices in

their implementation. For example, MaceMC [14] operates on dis-

tributed systems implemented in Mace, a domain-speci�c language

built on top of C++. An industrial strength controlled concurrency

framework, Coyote [5, 7], is restricted to the .NET platform, limit-

ing its applicability exclusively to C# code. While there are some

other e�orts for controlled concurrency testing and fault injection,

they have language and framework limitations, such as in earlier

work MODIST [23] for Windows applications, more recent works

Namazu[9] that focus on Java programs, or Nekara[2] for C++/C#

programs, restricting their broader use across diverse environments.

Instrumentation of the system under test often requires sig-

ni�cant manual e�ort and code instrumentation to intercept and

control the orderings of messages and faults. This process can be

expensive and time-consuming, especially for large codebases. Im-

proper instrumentation can also inadvertently alter the behavior

and timing of the system under test, potentially masking existing

bugs or introducing new ones. Moreover, since instrumentation is

typically system-speci�c, applying the same method to di�erent

systems under test often requires reimplementation for each.

Contribution. We propose DSTest, a generalized tool for testing

concurrency and fault tolerance of distributed system implementa-

tions. We provide a language-independent and modular interface

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

1861

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0000-0003-1237-0829
https://orcid.org/0000-0003-3657-5925
https://orcid.org/0000-0002-7038-165X
https://doi.org/10.1145/3650212.3685309
https://doi.org/10.1145/3650212.3685309
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3650212.3685309&domain=pdf&date_stamp=2024-09-11

ISSTA ’24, September 16–20, 2024, Vienna, Austria Ege Berkay Gulcan, João Neto, and Burcu Kulahcioglu Ozkan

that is extensible to intercept various message protocols and does

not require any manual instrumentation of the system under test.

We package the tool with an initial set of communication protocols

and event schedulers from the concurrency testing literature. We

also provide interfaces for extensions that allow researchers and

developers to use and extend it easily. We validated the applicability

of the tool with three di�erent production systems.

DSTest provides a practical testing tool that targets multiple

audiences. It allows distributed system developers to test and debug

their systems’ concurrency behaviors without any source code

instrumentation or development of scheduling algorithms. It also

helps developers of concurrency testing algorithms by providing

a generalized framework to implement their event schedulers and

evaluate them on a set of systems under test without additional

e�ort for instrumentation or repetitive implementation.

2 DSTest

We present DSTest, an easy-to-use concurrency testing tool for

distributed systems. DSTest di�ers from other tools in the �eld by

eliminating the need to instrument the source code of the system

under test (SUT).

Contolled sources of nondeterminism. Concurrency nondetermin-

ism in the delivery order of messages, nondeterministic network

and process faults are the major sources of nondeterminism that

cause heisenbugs in distributed systems [6, 11, 12, 18]. These sources

of nondeterminism in�uence the processing order of messages and

the local states of distributed nodes, resulting in di�erent possi-

ble executions for the same system inputs. DSTest controls these

sources to deterministically produce speci�c executions of dis-

tributed systems and help discover heisenbugs.

DSTest controls the nondeterminism by introducing mock nodes

for each node at the networking end-points, which the actual nodes

communicate with. Then, during the cluster initialization phase,

we pass the corresponding mock’s address instead of con�guring

the nodes with their neighbors’ addresses. That is, whenever a

node =8 intends to message a di�erent node = 9 , it instead sends the

message to the mock< 9 . This design allows DSTest to intercept

messages on the application layer with minimal e�ort. It can then

control the delivery order of messages and introduce network faults

(e.g., message delays, message drops, process isolation, or network

partitions) and process crash/recovery faults into the execution. It

can also decode the in�ight raw messages, exposing their contents

for more sophisticated scheduler and fault injection decisions.

2.1 Architecture

Figure 1 illustrates the high-level architecture of DSTest, which

involves three main modules: process manager, network manager,

and event scheduler, which are orchestrated by the test engine.

The process manager is responsible for spawning node and client

processes, injecting crash/restart process faults, and graceful stop-

ping of these nodes at the end of a test execution. Moreover, this

module con�gures the nodes based on the tool inputs and captures

the process logs.

The network manager is the bridge between the SUT and the

event scheduler. Its main tasks are to intercept messages between

nodes, extract meta-data from those messages for the schedulers,

and inject network faults. In a typical scenario of messaging be-

tween two nodes, the mock node ports receive the messages and

queue them. The queued messages are then passed through the

message translator of the SUTs application layer messaging proto-

col to extract any required information. Finally, the router checks

if there are any faults, such as partitions or node isolation, to �lter

messages. In this module, we also maintain vector clocks[15] to

maintain causality between messages and make that information

available for event schedulers.

The event scheduling module is DSTest’s center of decision-

making. It supports a set of event schedulers (Section 2.2), where

the schedulers specify the delivery order of messages to their recip-

ients, fault types and their injection order, and the scheduling of

client requests following di�erent scheduling algorithms (random

walk, PCT [3, 22] and QL [19]).

These three modules are connected by a test engine that reads

the test con�gurations (Section 2.3) and runs the test executions on

the SUT. Speci�cally, it (i) initiates the test execution by starting up

the cluster of distributed system nodes via the process manager, (ii)

enforces the execution of selected events during the test execution,

and (iii) tears down the cluster at the end of the test case. For (ii),

the engine orchestrates the actions of the process manager, network

manager, and event scheduler. Throughout the test execution, it

collects the in-�ight messages sent by the nodes via the network

manager, communicates the set of enabled messages and faults to

the event scheduler, and enforces the execution of the events as

dictated by the event scheduler. Depending on the selected next

event, it delivers the selected message to its recipient or enforces a

network fault by dropping the message via the network manager

or injecting process faults by crashing/restarting a node via the

process manager.

2.2 Event Schedulers

An event scheduler contains the logic for generating test cases, i.e.,

the sequences of messages and faults to deliver in the system. At

each step of the execution, the test engine asks the scheduler to

schedule the next event, and the scheduler selects the next event

to execute following its scheduling algorithm. Since the space of

possible event orderings is typically very large, di�erent schedulers

employ a set of heuristics that focus the search toward potentially

interesting subspaces. Each of these heuristics con�gures the sched-

uler towards various exploration strategies.

DSTest o�ers multiple built-in event schedulers:

Random walk. A naive random scheduler, which selects the

next event among the set of enabled events uniformly at ran-

dom or injects a random fault with a con�gured probability.

PCT. A randomized scheduler that implements the Probabilis-

tic Concurrency Testing (PCT) algorithm [3, 22], o�ering

nontrivial probabilistic guarantees for �nding bugs with a

con�gured parameter of bug depth.

QL. A learning-based scheduler based on the Q-learning algo-

rithm [19] that attempts to maximize the coverage of distinct

program states.

1862

Generalized Concurrency Testing Tool for Distributed Systems ISSTA ’24, September 16–20, 2024, Vienna, Austria

xs

Fault Injector

Node 1

Node 2

Node n

Process Manager

Port 1

Port 2

Port n

Ro
ut

er

M
es

sa
ge

 Q
ue

ue
s Message Translator

Schedule Queue

Process Faults Network Faults

Scheduler

Random

PCT

QL

Cluster 1

Input
Scripts

Tool
Configuration

Process
Logs

Schedule

Figure 1: Architectural components of DSTest. The process module is denoted in orange, the network module is in blue, and the

scheduling is in green.

2.3 Tool Con�guration and Inputs

DSTest requires two types of user inputs to test a system. First, it

requires a set of shell scripts to invoke node and client processes.

These scripts should be self-contained, i.e., they spawn a node or

a client process without the need to run additional commands.

The node script should especially have an argument to specify the

node’s network address. Optionally, the user can also provide a

clean-up script to clean temporary �les or detached background

processes created by the SUT. DSTest invokes the cleanup scripts

at the end of each test execution.

Second, it requires con�guring parameters provided in DSTest’s

con�guration �les. The con�guration involves �ve types of param-

eters for test, scheduler, network, faults, and process con�guration.

Each of these de�nes the parameters related to the module, such as

the number of test iterations for the test engine, scheduler-speci�c

parameters for the event scheduling, ports for the networking, faults

to inject, and the number of nodes for the processing module.

Examples of input scripts and con�guration �les are provided

for the systems validated within DSTest’s repository, alongside

descriptions of the con�guration parameters.

2.4 Checking the Correctness of Test Executions

DSTest detects generic correctness properties such as unexpected

exceptions, process crashes, and assertions in the source code. Users

can also check additional correctness speci�cations on the output

and logs of the execution. DSTest provides the user with the exe-

cution logs and executed sequence of events as output, which can

be used to check the correctness of the executions. For example,

the correctness of distributed database executions can be checked

on the collected sequence of events (submitted client requests and

returned responses to the requests), i.e., by checking speci�c con-

sistency properties, such as linearizability or serializability.

2.5 Extensibility of DSTest

Extending the Network Interception. DSTest intercepts in-�ight mes-

sages between the nodes and relies on the scheduler to specify when

each is delivered. Currently DSTest supports HTTP, HTTP/2C (com-

monly used by gRPC), as well as lower-level TCP communication.

Interceptors for new protocols (such as MQTT) can be supported by

creating a new interceptor implementation in the network module

that listens to speci�c ports and converts each message into the

tool’s canonical internal representation.

Although the TCP Interceptor would be compatible with nearly

every distributed application, working with higher-level protocols

allows us to abstract lower-level details. By considering network

interactions at a higher level, we reduce the space of interleavings

available to the scheduler without diminishing the set of application

states available for exploration.

Implementing new schedulers. DSTest provides a modular inter-

face that can be extended by implementing additional schedulers to

test SUTs with di�erent algorithms or allow developers of testing

algorithms to evaluate their approaches. To extend the tool with

a new event scheduling algorithm, the user needs to implement

the functions to de�ne the selection of the next event to schedule,

the scheduling of client requests, and the selection and injection of

faults. Depending on the scheduling algorithm, the user can extend

the con�guration �les to read the algorithm parameters.

3 Validation

We validated DSTest with three production distributed systems.

Table 1 provides the details for the SUTs. Input scripts and con-

�gurations for each system can be found in DSTest’s repository

alongside a Docker container for the environment.

Table 1: SUTs tested with DSTest.

Name Algorithm Language LoC

Ratis1 Raft Java 72405

Etcd2 Raft Go 200955

ZooKeeper3 Atomic Broadcast Java 194571

1https://github.com/apache/ratis
2https://github.com/etcd-io/etcd
3https://github.com/apache/zookeeper

1863

ISSTA ’24, September 16–20, 2024, Vienna, Austria Ege Berkay Gulcan, João Neto, and Burcu Kulahcioglu Ozkan

3.1 Example Use-Case: Testing Ratis

In this subsection, we demonstrate the usage of DSTest for testing

Apache Ratis [1], a Raft [21] implementation in Java. As a use case,

we use the arithmetic server application example provided by Ratis.

As explained in Section 2.3, DSTest tests the SUT using some

input scripts and test con�guration provided by the user.

First, wewrite a script for spawning a node in the cluster. Figure 2

provides a Bash script to spawn a Ratis node. During run-time, the

DSTest’s process module calls this script to set up the Raft cluster.

1 #!/bin/bash

2 BIN=<path-to-ratis>/ratis-examples/src/main/bin

3 PEERS=n0:127.0.0.1:$1,n1:127.0.0.1:$2,n2:127.0.0.1:$3;

4 ID=$4;${BIN}/server.sh arithmetic server --id ${ID}

--storage /tmp/ratis/${ID} --peers ${PEERS}

Figure 2: Example script for spawning a Ratis node in a clus-

ter of three nodes. The �rst three arguments are the port

numbers, and the last one is the server id.

Then, we write a script for the client process. The user can

provide di�erent types of clients to test various system behaviors.

Figure 3 illustrates an example client we used in our validation. The

script submits a client request to the arithmetic server application

to de�ne a variable a and set its value.

1 #!/bin/bash

2 BIN=<path-to-ratis>/ratis-examples/src/main/bin

3 PEERS=n0:127.0.0.1:80,n1:127.0.0.1:81,n2:127.0.0.1:82

4 ${BIN}/client.sh arithmetic assign --name a --value

3 --peers ${PEERS}

Figure 3: Example script for a Ratis client to submit a request.

Optionally, the user can provide a clean-up script as input to

clean up the temporary �les produced by the SUT execution. Ratis

arithmetic server example creates temporary snapshots. The script

in Figure 4 ensures that the background processes created by Ratis

are killed and the temporary �les are removed.

1 #!/bin/bash

2 kill $(jps | grep 'ratis-examples' | grep -v 'grep'

| awk '{print $1}')

3 rm -rf /tmp/ratis

4 echo "All Ratis examples have been stopped."

Figure 4: Example clean-up script for Ratis test executions.

The �nal input of the tool is the test con�guration, provided in

a con�guration �le written in YAML markup language. Figure 5

de�nes an example con�guration. Here, we de�ne an experiment

run with 10 iterations for a Ratis cluster with 3 replica nodes. The

selected scheduler is the naive random walk scheduler, and each

iteration is performed with 100 scheduling steps. When a user

extends the tool, e.g., with a new scheduler, the use of the new

1 TestCon�g:

2 Name: ratis−test

3 Experiments: 1

4 Iterations: 10

5 WaitDuration: 50 # in ms

6 SchedulerCon�g:

7 Type: random

8 Steps: 100

9 ClientRequests: 1

10 Seed: 42

11 Params: {"client_request_probability": 0.05}

12 NetworkCon�g:

13 BaseReplicaPort: 80

14 BaseInterceptorPort: 10000

15 FaultCon�g:

16 - Type: dummy # does nothing

17 Params: {}

18 ProcessCon�g:

19 NumReplicas: 3

20 Timeout: 10 # in seconds

21 OutputDir: output

22 ReplicaScript: scripts / ratis_server . sh

23 ClientScripts:

24 - scripts / ratis_client .sh

25 CleanScript: scripts / ratis_clean . sh

26 ReplicaParams:

27 - "6000 10001 10002 n0"

28 - "10003 6001 10005 n1"

29 - "10006 10007 6002 n2"

Figure 5: Example con�guration �le for testing Ratis.

scheduler can also be con�gured using this �le, i.e., Params and

Type parameters under the SchedulerConfig.

4 Conclusion

This paper introduced DSTest, a generalized concurrency testing

tool for testing distributed system implementations. DSTest ad-

dresses several limitations of existing controlled concurrency test-

ing frameworks, such as the requirement for heavy instrumentation,

language dependency, and limited applicability to production sys-

tems. By leveraging a modular architecture and supporting multiple

schedulers, DSTest can e�ectively be used for testing a system with

speci�c testing algorithms with custom event schedulers.

Our validation on three production systems demonstrates the

applicability of DSTest for testing di�erent systems without any

instrumentation into their source codes. DSTest’s open-source avail-

ability encourages further development and integration into di�er-

ent environments, promoting broader adoption and enhancement

by the research and developer communities.

5 Data-Availability Statement

The source code of DSTest, an introductory Youtube video, and the

archived version of the tool can be accessed in the following links:

• Github: https://github.com/egeberkaygulcan/dstest

• Youtube: https://youtu.be/Q2Kerjx_c1w

• Zenodo archive DOI: 10.5281/zenodo.12668852 [10]

1864

https://github.com/egeberkaygulcan/dstest
https://youtu.be/Q2Kerjx_c1w

Generalized Concurrency Testing Tool for Distributed Systems ISSTA ’24, September 16–20, 2024, Vienna, Austria

References
[1] [n. d.]. Apache Ratis - Open source Java implementation for Raft consensus

protocol. Retrieved July, 2024 from https://ratis.apache.org/
[2] Udit Agarwal, Pantazis Deligiannis, Cheng Huang, Kumseok Jung, Akash Lal,

Immad Naseer, Matthew Parkinson, Arun Thangamani, Jyothi Vedurada, and
Yunpeng Xiao. 2021. Nekara: Generalized Concurrency Testing. In 2021 36th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, Melbourne, Australia, 679–691. https://doi.org/10.1109/ASE51524.2021.
9678838

[3] Sebastian Burckhardt, Pravesh Kothari, Madanlal Musuvathi, and Santosh Na-
garakatte. 2010. A Randomized Scheduler with Probabilistic Guarantees of
Finding Bugs. In Proceedings of the 15th International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS 2010, Pitts-
burgh, Pennsylvania, USA, March 13-17, 2010, James C. Hoe and Vikram S. Adve
(Eds.). ACM, 167–178. https://doi.org/10.1145/1736020.1736040

[4] Pantazis Deligiannis, Alastair F. Donaldson, Jeroen Ketema, Akash Lal, and Paul
Thomson. 2015. Asynchronous programming, analysis and testing with state
machines. In Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, Portland, OR, USA, June 15-17, 2015, David
Grove and Stephen M. Blackburn (Eds.). ACM, 154–164. https://doi.org/10.1145/
2737924.2737996

[5] Pantazis Deligiannis, Narayanan Ganapathy, Akash Lal, and Shaz Qadeer. 2021.
Building Reliable Cloud Services Using Coyote Actors. In SoCC ’21: ACM Sym-
posium on Cloud Computing, Seattle, WA, USA, November 1 - 4, 2021, Carlo
Curino, Georgia Koutrika, and Ravi Netravali (Eds.). ACM, 108–121. https:
//doi.org/10.1145/3472883.3486983

[6] Pantazis Deligiannis, Matt McCutchen, Paul Thomson, Shuo Chen, Alastair F.
Donaldson, John Erickson, Cheng Huang, Akash Lal, Rashmi Mudduluru, Shaz
Qadeer, and Wolfram Schulte. 2016. Uncovering Bugs in Distributed Storage
Systems during Testing (Not in Production!). In 14th USENIX Conference on File
and Storage Technologies, FAST 2016, Santa Clara, CA, USA, February 22-25, 2016,
Angela Demke Brown and Florentina I. Popovici (Eds.). USENIX Association,
249–262.

[7] Pantazis Deligiannis, Aditya Senthilnathan, Fahad Nayyar, Chris Lovett, and
Akash Lal. 2023. Industrial-Strength Controlled Concurrency Testing for sc C tt #
Programswith sc Coyote. In Tools and Algorithms for the Construction andAnalysis
of Systems, Sriram Sankaranarayanan and Natasha Sharygina (Eds.). Vol. 13994.
Springer Nature Switzerland, Cham, 433–452. https://doi.org/10.1007/978-3-
031-30820-8_26

[8] Ankush Desai, Vivek Gupta, Ethan K. Jackson, Shaz Qadeer, Sriram K. Rajamani,
and Damien Zu�erey. 2013. P: safe asynchronous event-driven programming. In
ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’13, Seattle, WA, USA, June 16-19, 2013, Hans-Juergen Boehm and Cormac
Flanagan (Eds.). ACM, 321–332. https://doi.org/10.1145/2491956.2462184

[9] GitHub. [n. d.]. Namazu: Programmable Fuzzy Scheduler for Testing Distributed
Systems. Retrieved July, 2024 from https://github.com/osrg/namazu

[10] Ege Berkay Gulcan, João Neto, and Burcu Kulahcioglu Ozkan. 2024. Archived
Repository of "Generalized Concurrency Testing Tool for Distributed Systems". https:
//doi.org/10.5281/zenodo.12668852

[11] Haryadi S. Gunawi, Thanh Do, Agung Laksono, Mingzhe Hao, Tanakorn Leesat-
apornwongsa, Je�rey F. Lukman, and Riza O. Suminto. 2015. What Bugs Live in
the Cloud?: A Study of Issues in Scalable Distributed Systems. login Usenix Mag.
40, 4 (2015). https://www.usenix.org/publications/login/aug15/gunawi

[12] Haryadi S. Gunawi, Mingzhe Hao, Tanakorn Leesatapornwongsa, Tiratat Patana-
anake, Thanh Do, Je�ry Adityatama, Kurnia J. Eliazar, Agung Laksono, Je�rey F.

Lukman, Vincentius Martin, and Anang D. Satria. 2014. What Bugs Live in
the Cloud? A Study of 3000+ Issues in Cloud Systems. In Proceedings of the
ACM Symposium on Cloud Computing, Seattle, WA, USA, November 3-5, 2014,
Ed Lazowska, Doug Terry, Remzi H. Arpaci-Dusseau, and Johannes Gehrke (Eds.).
ACM, 7:1–7:14. https://doi.org/10.1145/2670979.2670986

[13] Gerard J. Holzmann. 1997. The Model Checker SPIN. IEEE Trans. Software Eng.
23, 5 (1997), 279–295. https://doi.org/10.1109/32.588521

[14] Charles Killian, James W Anderson, Ryan Braud, Ranjit Jhala, and Amin Vahdat.
2007. Mace: Language Support for Building Distributed Systems. (2007).

[15] Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed
System. Commun. ACM 21, 7 (July 1978), 558–565. https://doi.org/10.1145/
359545.359563

[16] Leslie Lamport. 2002. Specifying Systems, The TLA+ Language and Tools for
Hardware and Software Engineers. Addison-Wesley. http://research.microsoft.
com/users/lamport/tla/book.html

[17] Tanakorn Leesatapornwongsa, Mingzhe Hao, Pallavi Joshi, Je�rey F. Lukman,
and Haryadi S. Gunawi. 2014. SAMC: Semantic-Aware Model Checking for
Fast Discovery of Deep Bugs in Cloud Systems. In 11th USENIX Symposium on
Operating Systems Design and Implementation, OSDI ’14, Broom�eld, CO, USA,
October 6-8, 2014, Jason Flinn and Hank Levy (Eds.). USENIX Association, 399–
414.

[18] Tanakorn Leesatapornwongsa, Je�rey F. Lukman, Shan Lu, and Haryadi S. Gu-
nawi. 2016. TaxDC: ATaxonomy of Non-Deterministic Concurrency Bugs inData-
center Distributed Systems. In Proceedings of the Twenty-First International Confer-
ence on Architectural Support for Programming Languages and Operating Systems.
ACM, Atlanta Georgia USA, 517–530. https://doi.org/10.1145/2872362.2872374

[19] Suvam Mukherjee, Pantazis Deligiannis, Arpita Biswas, and Akash Lal. 2020.
Learning-Based Controlled Concurrency Testing. Proc. ACM Program. Lang. 4,
OOPSLA (Nov. 2020), 1–31. https://doi.org/10.1145/3428298

[20] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gérard Basler, Pira-
manayagamArumugaNainar, and IulianNeamtiu. 2008. Finding and Reproducing
Heisenbugs in Concurrent Programs. In 8th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2008, December 8-10, 2008, San Diego,
California, USA, Proceedings, Richard Draves and Robbert van Renesse (Eds.).
USENIX Association, 267–280. http://www.usenix.org/events/osdi08/tech/full_
papers/musuvathi/musuvathi.pdf

[21] Diego Ongaro and John Ousterhout. 2014. In Search of an Understandable
Consensus Algorithm. (2014), 305–319.

[22] Burcu Kulahcioglu Ozkan, Rupak Majumdar, Filip Niksic, Mitra Tabaei Befrouei,
and Georg Weissenbacher. 2018. Randomized Testing of Distributed Systems
with Probabilistic Guarantees. Proc. ACM Program. Lang. 2, OOPSLA (Oct. 2018),
1–28. https://doi.org/10.1145/3276530

[23] Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu, Xuezheng Liu, Haoxiang
Lin, Mao Yang, Fan Long, Lintao Zhang, and Lidong Zhou. 2009. MODIST:
Transparent Model Checking of Unmodi�ed Distributed Systems. In Proceedings
of the 6th USENIX Symposium on Networked Systems Design and Implementation,
NSDI 2009, April 22-24, 2009, Boston, MA, USA, Jennifer Rexford and Emin Gün
Sirer (Eds.). USENIX Association, 213–228.

[24] Xinhao Yuan and Junfeng Yang. 2020. E�ective Concurrency Testing for
Distributed Systems. In ASPLOS ’20: Architectural Support for Programming
Languages and Operating Systems, Lausanne, Switzerland, March 16-20, 2020,
James R. Larus, Luis Ceze, and Karin Strauss (Eds.). ACM, 1141–1156. https:
//doi.org/10.1145/3373376.3378484

Received 2024-07-05; accepted 2024-07-26

1865

https://ratis.apache.org/
https://doi.org/10.1109/ASE51524.2021.9678838
https://doi.org/10.1109/ASE51524.2021.9678838
https://doi.org/10.1145/1736020.1736040
https://doi.org/10.1145/2737924.2737996
https://doi.org/10.1145/2737924.2737996
https://doi.org/10.1145/3472883.3486983
https://doi.org/10.1145/3472883.3486983
https://doi.org/10.1007/978-3-031-30820-8_26
https://doi.org/10.1007/978-3-031-30820-8_26
https://doi.org/10.1145/2491956.2462184
https://github.com/osrg/namazu
https://doi.org/10.5281/zenodo.12668852
https://doi.org/10.5281/zenodo.12668852
https://www.usenix.org/publications/login/aug15/gunawi
https://doi.org/10.1145/2670979.2670986
https://doi.org/10.1109/32.588521
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
http://research.microsoft.com/users/lamport/tla/book.html
http://research.microsoft.com/users/lamport/tla/book.html
https://doi.org/10.1145/2872362.2872374
https://doi.org/10.1145/3428298
http://www.usenix.org/events/osdi08/tech/full_papers/musuvathi/musuvathi.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/musuvathi/musuvathi.pdf
https://doi.org/10.1145/3276530
https://doi.org/10.1145/3373376.3378484
https://doi.org/10.1145/3373376.3378484

	Abstract
	1 Introduction
	2 tealDSTest
	2.1 Architecture
	2.2 Event Schedulers
	2.3 Tool Configuration and Inputs
	2.4 Checking the Correctness of Test Executions
	2.5 Extensibility of tealDSTest

	3 Validation
	3.1 Example Use-Case: Testing Ratis

	4 Conclusion
	5 Data-Availability Statement
	References

